Exploring parameter space in reinforcement learning

نویسندگان

  • Thomas Rückstieß
  • Frank Sehnke
  • Tom Schaul
  • Daan Wierstra
  • Yi Sun
  • Jürgen Schmidhuber
چکیده

This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages over action perturbation. We review two recent parameter-exploring algorithms: Natural Evolution Strategies and Policy Gradients with Parameter-Based Exploration. Both outperform state-of-the-art algorithms in several complex high-dimensional tasks commonly found in robot control. Furthermore, we describe how a novel exploration method, State-Dependent Exploration, can modify existing algorithms to mimic exploration in parameter space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Reducing state space exploration in reinforcement learning problems by rapid identification of initial solutions and progressive improvement of them

Most existing reinforcement learning methods require exhaustive state space exploration before converging towards a problem solution. Various generalization techniques have been used to reduce the need for exhaustive exploration, but for problems like maze route finding these techniques are not easily applicable. This paper presents an approach that makes it possible to reduce the need for stat...

متن کامل

An Adaptive Sampling Approach for Bayesian Reinforcement Learning

In this review, we summarized Monte Carlo Bayesian Reinforcement learning, and explored the possible improvements by proposing better sampling strategy by adaptive sampling. Monte Carlo Bayesian Reinforcement learning is a simple and general approach which samples a finite set of hypotheses from the model parameter space. MC-BRL generates a discrete POMDP that approximates the underlying BRL pr...

متن کامل

Parameter-exploring policy gradients

We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Paladyn

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010